Jumat, 06 November 2009

KOPLING

A. Pengertian Kopling
Kopling (clutch) terletak di antara mesin dan transmisi. Kopling berfungsi untuk menghubungkan dan memutuskan putaran mesin ke transmisi.




Gambar 1. Konstuksi letak unit kopling (clutch) pada kendaraan
Kopling dalam pemakaian dikendaraan, harus memiliki syarat- syarat minimal sebagai berikut :
1. Harus dapat memutus dan menghubungkan putaran mesin ke transmisi dengan lembut. Kenyamanan berkendara menuntut terjadinya pemutusan dan penghubungan tenaga mesin berlangsung dengan lembut. Lembut berarti terjadinya proses pemutusan dan penghubungan adalah secara bertahap.
2. Harus dapat memindahkan tenaga mesin dengan tanpa slip Jika kopling sudah menghubung penuh maka antara fly wheel dan plat koping tidak boleh terjadi slip sehingga daya dan putaran mesin terpindahkan 100%.
3. Harus dapat memutuskan hubungan dengan sempurna dan cepat. Pada saat kita operasionalkan, kopling harus dapat memutuskan daya dan putaran dengan sempurna, yaitu daya dan putaran harus betul-betul tidak diteruskan, sedangkan pada saat kopling tidak dioperasionalkan, kopling harus menghubungkan daya dan putaran 100%. Kerja kopling dalam memutus dan menghubungkan daya dan putaran tersebut harus cepat atau tidak banyak membutuhkan waktu

B. Jenis-jenis kopling
a. Kopling Gesek
Dinamakan kopling gesek karena untuk melakukan pemindahan daya adalah dengan memanfaatkan gaya gesek yang terjadi pada bidang gesek. Ditinjau dari bentuk bidang geseknya kopling dibedakan menjadi 2 yaitu :
(1) Kopling piringan (disc clutch)
Kopling piringan adalah unit kopling dengan bidang gesek berbentuk piringan atau disc.
(2) Kopling konis (cone clutch)
Kopling konis adalah unit kopling dengan bidang gesek berbentuk konis.
Ditinjau dari jumlah piringan/ plat yang digunakan kopling dibedakan menjadi 2 yaitu :
(1) Kopling plat tunggal
Kopling plat tunggal adalah unit kopling dengan jumlah piringan koplingnya hanya satu.

Gambar 2. Konstruksi unit kopling plat tunggal


(2) Kopling plat ganda/ banyak
Kopling plat banyak adalah unit kopling dengan jumlah piringan lebih dari satu.


Gambar 3. Konstruksi unit kopling plat ganda



Gambar 4. Konstruksi unit kopling plat banyak



Gambar 5. Plat kopling pada unit kopling plat banyak

Gesekan antar bidang/ permukaan komponen tentu akan menimbulkan panas, sehingga memerlukan media pendinginan. Ditinjau dari lingkungan/media kerja, kopling dibedakan menjadi :
(1) Kopling basah
Kopling basah adalah unit kopling dengan bidang gesek (piringan atau disc) terendam cairan/ minyak. Aplikasi kopling basah umumnya pada jenis atau tipe plat banyak, dimana kenyamanan berkendara yang diutamakan dengan proses kerja kopling tahapannya panjang, sehingga banyak terjadi gesekan/slip pada bidang gesek kopling dan perlu pendinginan.
(2) Kopling kering
Kopling kering adalah unit kopling dengan bidang gesek (piringan atau disc) tidak terendam cairan/ minyak (dan bahkan tidak boleh ada cairan/ minyak).
Untuk mendapatkan penekanan yang kuat saat bergesekan, sehingga saat meneruskan daya dan putaran tidak terjadi slip maka dipasangkan pegas penekan. Ditinjau dari pegas penekannya, kopling dibedakan menjadi :
(1). Kopling pegas spiral
Adalah unit kopling dengan pegas penekannya berbentuk spiral. Dalam pemakaiannya dikendaraan kopling dengan pegas coil memiliki kelebihan : penekanannya kuat dan kerjanya cepat/ spontan. Sedangkan kekurangannya : penekanan kopling berat, tekanan pada plat penekan kurang merata, jika kampas kopling aus maka daya tekan berkurang, terpengaruh oleh gaya sentrifugal pada kecepatan tinggi dan komponennya lebih banyak, sehingga kebanyakan kopling pegas spiral ini digunakan pada kendaraan menengah dan berat yang mengutamakan kekuatan dan bekerja pada putaran lambat.








Gambar 6. Kopling gesek dengan pegas spiral

(2). Kopling pegas diaphragma
Adalah unit kopling dengan pegas penekannya berbentuk diaphragma. Penggunaan pegas diaphragma mengatasi kekurangan dari pegas spiral. Namun pegas diaphragma mempunyai kekurangan : kontruksinya tidak sekuat pegas spiral dan kurang responsive (kerjanya lebih lambat), sehingga kebanyakan kopling pegas diaphragm ini digunakan pada kendaraan ringan yang mengutamakan kenyamanan.








Gambar7.Kopling gesek pegas diaphragma.

Konstruksi kopling gesek


1) Plat Kopling

Plat kopling adalah komponen unit kopling yang berfungsi menerima dan meneruskan tenaga mesin dari roda penerus dan plat penekan ke input shaft transmisi. Plat kopling dipasangkan pada alur-alur input shaft transmisi. Bagian plat kopling yang beralur dan berhubungan dengan input shaft transmisi dinamakan clutch hub. Kampas kopling (facing) dipasangkan pada plat kopling untuk memperbesar gesekan. Kampas kopling dipasangkan pada cushion plate dengan dikeling.
Cushion plate dipasangkan pada plat kopling juga dengan dikeling. Hentakan saat kopling mulai meneruskan putaran dan pada saat akselerasi dan deselerasi diredam oleh torsion dumper. Terdapat dua jenis torsion dumper yakni torsion rubber dumper dan torsion spring dumper.
2) Rumah kopling, plat penekan dan pegas penekan


Gambar 10. Rumah kopling tipe boss drive
Clutch cover unit terdiri dari plat penekan, pegas penekan, tuas penekan dan rumah kopling. Ditinjau dari konstruksinya clutch cover dibedakan menjadi tiga yakni: boss drive type clutch cover, radial strap type clutch cover dan corded strap drive tipe clutch cover. Pada tipe boss drive plat penekan dipasangkan pada rumah kopling dengan boss sehingga konstruksinya kuat, namun perpindahan tenaga tidak bisa lembut. Tipe radial strap type clutch cover dan corded strap drive tipe clutch cover. Pada tipe boss drive plat penekan dihubungkan ke rumah kopling oleh strap (plat baja) dalam arah radial dari boss. Tipe corded strap drive plat penekan ditahan oleh tiga buah plat pada rumah kopling sehingga daya
elastisitas plat tersebut memungkinkan perpindahan tenaga terjadi dengan lembut.


Gambar 11. Rumah kopling tipe radial strap drive dan chorded strap
Cara kerja kopling gesek
Kopling berfungsi untuk memindahkan tenaga secara halus dari mesin ke transmisi melalui adanya gesekan antara plat kopling dengan fly wheel dan plat penekan. Kekuatan gesekan diatur oleh pegas penekan yang dikontrol oleh pengemudi melalui mekanisme penggerak kopling.
Jika pedal kopling ditekan penuh, tekanan pedal tersebut akan diteruskan oleh mekanisme penggerak sehingga akan mendorong plat penekan melawan tekanan pegas penekan sehingga plat kopling tidak mendapat tekanan. Gesekan antara plat kopling dengan fly wheel dan plat penekan tidak terjadi sehingga putaran mesin tidak diteruskan.
Jika pedal kopling ditekan sebagian/ setengah, tekanan pedal tersebut akan diteruskan oleh mekanisme penggerak sehingga akan mendorong plat penekan melawan sebagain/ setengah tekanan pegas penekan sehingga tekanan plat penekan ke fly wheel berkurang, sehingga plat kopling akan slip. Gesekan antara plat kopling dengan fly wheel dan plat penekan kecil sehingga putaran dan daya mesin diteruskan sebagian.
Apabila pedal dilepas, maka gaya pegas akan kembali mendorong dengan penuh plat penekan. Plat penekan menghimpit plat kopling ke fly wheel dengan kuat sehingga terjadi gesekan kuat dan berputar bersamaan. Dengan demikian putaran dan daya mesin diteruskan sepenuhnya (100%) tanpa slip.





b) Kopling Magnet
Dinamakan kopling magnet karena untuk melakukan pemindahan daya dengan memanfaatkan gaya magnet. Magnet yang digunakan adalah magnet remanent yang dibangkitkan dengan mengalirkan arus listrik ke dalam sebuah lilitan kawat pada sebuah inti besi. Listrik yang dibangkitkan atau tersedia dikendaraan adalah listrik arus lemah sehingga magnet yang dibangkitkan tidak cukup kuat untuk dijadikan sebagai kopling pemindah daya utama. Kopling jenis ini kebanyakan hanya digunakan sebagai kopling pada kompresor air conditioner (AC).











Gambar 13. Konstuksi unit kopling magnet

c) Kopling Satu Arah (one way clutch/ free wheeling clutch/ over runing clutch)
Kopling satu arah merupakan kopling otomatis yang memutus dan menghubungkan poros penggerak (driving shaft) dan yang digerakkan (driven shaft) tergantung pada perbandingan kecepatan putaran sudut dari poros-poros tersebut. Jika kecepatan driving lebih tinggi dari driven, kopling bekerja menghubungkan driving dan driven. Jika kecepatan driving lebih rendah dari driven, kopling bekerja memutuskan driving dan driven. Ada dua jenis one way clutch yakni sprag type dan roller type.



d) Kopling Hidrolik
Dinamakan kopling hidrolik karena untuk melakukan pemindahan daya adalah dengan memanfaatkan tenaga hidrolis. Tenaga hidrolis didapat dengan menempatkan cairan/ minyak pada suatu wadah/ mekanisme yang diputar, sehingga cairan akan terlempar/ bersirkulasi oleh adanya gaya sentrifugal akibat putaran sehingga fluida mempunyai tenaga hidrolis. Fluida yang bertenaga inilah yang digunakan sebagai penerus/ pemindah tenaga.








Gambar 15. Konstuksi unit kopling fluida
Komponen utama pada unit kopling hidrolik adalah : pump impeller, turbin runner dan stator. Pump impeller merupakan mekanisme pompa yang membangkitkan tenaga hidrolis pada fluida. Turbin runner adalah mekanisme penangkap tenaga hidrolis fluida yang dibangkitkan pump impeller. Stator adalah mekanisme pengatur arah aliran fluida agar tidak terjadi aliran yang merugikan tetapi justru aliran yang menguntungkan sehingga didapatkan peningkatan momen/ torsi.


C. Sistem pengoperasian kopling
Sistem pengoperasian kopling adalah sebuah unit mekanisme untuk mengoperasionalkan kopling yaitu memutus dan menghubungkan putaran dan daya mesin ke unit pemindah daya selanjutnya (transmisi). Secara umum terdapat dua mekanisme penggerak kopling, yaitu : sistem mekanik dan sistem hidrolik. Pada perkembangan saat ini, pada kendaraan-kendaraan beban menengah dan beban berat menggunakan sistem pneumatik-hidrolik.
a) Sistem pengoperasian kopling tipe mekanik
(1). Cable mechanism (mekanik kabel)
Menggunakan media sebuah kabel baja untuk meneruskan gerakan pedal ke garpu pembebas. Keuntungan dari mekanisme ini adalah konstruksinya sederhana dan karena sifat kabel yang fleksible maka penempatannya juga fleksible dan tidak memerlukan ruang gerak yang besar. Mekanisme ini mempunyai kerugian gesek yang besar antara kabel dan selongsongnya, apalagi jika banyak belokan/ tekukan. Elastisitas bahan kabel menyebabkan mekanisme ini tidak bekerja dengan spontan dan kurang kuat untuk beban berat.
(2). Linkage mechanism (mekanik batang)
Mekanisme batang mempunyai keuntungan elastisitas bahan lebih kecil sehingga kuat dan spontanitas kerja lebih baik. Kelemahan/ kekurangan sistem ini adalah karena media penerusnya adalah batang, maka untuk penempatannya menjadi lebih sulit dan perlu ruang gerak yang lebih besar.

Gambar 16. Cable mechanism (mekanik kabel)

Gambar 17. Linkage mechanism (mekanik batang)

(3). Centrifugal mechanism (mekanik sentrifugal)


Gambar 18. Konstuksi mekanisme penggerak centrifugal

Jika mesin berputar maka bandul sentrifugal akan terlempar keluar oleh gaya sentrifugal, sehingga centrifugal plate akan tertarik sehingga menekan plat kopling ke back plate/ fly wheel. Bila putaran mesin berkurang maka intensitas tekanan centrifugal plate juga berkurang.



b) Sistem pengoperasian kopling tipe hidrolik

Gambar 19. Pengoperasian kopling tipe hidrolik
Pengoperasian kopling tipe hidrolik adalah merupakan sistem pemindahan tenaga melalui fluida cair/ minyak. Prinsip yang digunakan pada sistem hidrolik ini adalah pengaplikasian hukum Pascal, dimana jika ada fluida dalam ruang tertutup diberi tekanan maka tekanan tersebut akan diteruskan ke segala arah dengan sama besar. Dengan dibuat adanya perbandingan diameter (luas bidang) pada master cylinder lebih kecil dari release cylinder maka akan didapatkan peningkatan tenaga. Gaya/tenaga dihitung dengan persamaan sebagai berikut:






Komponen sistem hidrolik lebih banyak dibandingkan sistem mekanik, tetapi mempunyai keuntungan yang mampu mengatasi kekurangan sistem penggerak mekanik yaitu : kehilangan tenaga karena gesekan lebih kecil sehingga penekanan pedal kopling lebih ringan, memungkinkan diberikan perbandingan diameter master dan release silinder sehingga penekanan pedal kopling jauh lebih ringan, pemindahan tenaga lebih cepat dan lebih baik, penempatan fleksibel karena fluida dialirkan melalui fleksible hose.
Kekurangan dari sistem hidrolik adalah konstruksinya rumit dan dapat terjadi kegagalan fungsi jika terdapat udara di dalam sistem. Komponen utama dari sistem hidrolik ini adalah: master silinder dan release silinder.
(1). Master Silinder
Ada 2 tipe master silinder yang umum digunakan pada sistem pengoperasian kopling, yakni tipe girling dan tipe portlees.

Gambar 20. Konstuksi master cylinder girling type

Gambar 21. Konstuksi master cylinder portless type

(a). Tipe Girling
Cara kerja master silinder tipe girling adalah sebagai berikut :
Pada saat piston mulai bergerak menekan minyak di dalam silinder, tekanan minyak akan mengalir ke reservoir melalui lubang ujung piston, cylinder cup dan spacer, sehingga minyak akan mengalir ke reservoir dan ke release cylinder melalui flexible hose dengan tekanan yang kecil.


Gambar 22. Kerja penekanan awal
Pada saat piston bergerak lebih maju, maka lubang pada ujung piston akan tertutup oleh adanya tekanan minyak yang menekan spacer, sehingga tekanan minyak yang ke release cylinder semakin tinggi dan mampu menekan piston release cylinder mendorong push rod.

Gambar 23. Kerja efektif master silinder
Pada saat tekanan pedal hilang, maka compression spring akan mendorong piston bergerak mundur, yang menyebabkan kevakuman pada silinder, sehingga minyak reservoir mengalir ke dalam silinder.


Gambar 24. Kerja pengembalian tekanan

Pada saat piston telah kembali pada posisi awal karena tekanan compression spring, maka minyak dari release cylinder akan mengalir kembali ke reservoir sampai tekanan minyak normal kembali.

Gambar 25. Kerja akhir master

(b). Tipe Portless

Gambar 26. Kerja efektif master silinder tipe portless
Pada saat pedal kita tekan, piston bergerak maju dan minyak melalui valve inlet mengalir ke reservoir dan release cylinder dengan tekanan yang rendah/ kecil. Jika pedal terus ditekan maju, gaya yang mempertahankan conecting rod akan hilang dan conecting rod akan bergerak maju oleh gaya conical spring, sehingga inlet valve akan menutup, yang mengakibatkan tekanan fluida yang ke release silinder naik.
Bila pedal kopling dibebaskan, piston akan kembali mundur oleh tekanan compression spring, maka tekanan fluida akan turun, sehingga spring retainer akan menarik conecting rod ke arah luar an in-let valve terbuka. Gaya balik conical spring maka minyak dari release cylinder kembali ke master cylinder dan recervoir.

Gambar 27. Kerja akhir (normalisasi tekanan)

(2). Release Cylinder
Tipe release silinder yang umum digunakan ada tiga yakni adjustable type, non adjustable dan free adjustable type. Pada jenis adjustable type untuk menyesuaikan jarak bebas ujung release fork dilakukan dengan menyetel mur penyetelnya. Free edjustable type tidak memerlukan penyetelan karena penyetelan akan terjadi secara otomatis oleh pegas. Pada tipe ini release bearing selalu menempel pada pressure lever atau diaphragm spring. Non adjustable type menyempurnakan free adjustable type, dimana non-adjustable ini panjang push rodnya dapat distel sehingga dapat dijaga release bearing tidak selalu menempel pada pressure lever atau diaphragm spring.


Gambar 28. Konstuksi release cylinder adjustable dan non-adjustable type

Gambar 29. Konstuksi release cylinder free-adjustable type

(3). Kebebasan Kopling (free play)
Free play adalah kebebasan yang terdapat pada sistem kopling pada saat pedal kopling mulai ditekan sampai dengan release bearing mulai menyentuh diaphragm spring atau pressure lever. Dengan adanya kebebasan kopling maka sistem kopling tidak akan bekerja pada saat kopling tidak ditekan dan tidak lngsung bekerja saat pedal ditekan, tetapi memerlukan beberapa waktu untuk mencapai langkah efektif.
(a) Kebebasan master cylinder dan push-rod.
Merupakan jarak dari ujung push-rod sampai dengan piston pada saat pedal kopling tidak ditekan.

Gambar 30. Kebebasan master cylinder dan push-rod
(b) Kebebasan minyak kopling
Merupakan jarak mulai dari push-rod master cylinder menekan piston sampai tertutupnya lubang ke recervoir.

Gambar31. Kebebasan minyak kopling
(c). Kebebasan release fork
Merupakan jarak mulai dari push-rod release cylinder bergerak sampai release bearing menyentuh diphragm spring atau pressure lever, pada saat pedal kopling bebas.






Gambar 32. Kebebasan release fork

c) Sistem pengoperasian kopling tipe pneumatik - hidrolik/servo - hidrolik
Model sistem pengoperasian kopling tipe pneumatik hidrolik, antara lain yaitu : sistem pneumatik memicu sistem hidrolik, sistem hidrolik memicu sistem pneumatik, sistem hidrolik memicu sistem pneumatik kemudian sistem pneumatiknya memicu sistem hidrolik berikutnya, sistem pneumatik memicu sistem hidrolik kemudian sistem hidroliknya memicu sistem pneumatik berikutnya, serta sistem pneumatik murni.
Pada gambar di atas, dicontohkan sistem hidrolik mengaktifkan sistem pneumatik. Sistem pneumatik kemudian memicu sistem hidrolik berikutnya.
Booster merupakan salah satu komponen penting dalam sistem tersebut. Konstruksi booster adalah sebagai berikut :



Gambar34. Konstruksi booster kopling servo- hidrolik
Piston booster langsung dihubungkan ke piston dan push-rod kemudian release fork, tidak melalui mekanisme hidrolik. Sedangkan pada tipe sistem hidrolik memicu sistem pneumatik kemudian sistem pneumatiknya memicu sistem hidrolik, piston booster dihubungkan ke piston sistem hidrolik berikutnya.


(1). Prinsip Kerja Sistem Pengoperasian Kopling Tipe Pneumatik – Hydraulic
Kopling tidak berhubungan
Tekan pedal kopling  Tekanan fluida di dalam master kopling naik  Relay valve bekerja  Poppet valve terbuka  Tekanan udara mengoperasikan power piston  Piston hidrolik bergerak  Outer lever kopling beroperasi  Release bearing beroperasi  Pressure plate tidak menekan disc clutch  disc clutch bebas
Kopling berhubungan
Lepas pedal kopling  tekanan fluida di dalam master kopling berkurang  Relay valve kembali  Poppet valve tertutup  Tekanan udara keluar dari lubang pernapasan  Power piston kembali  Hydrolik piston kembali  Release bearing kembali  Release lever kembali ke posisi semula oleh tekanan pegas  Pressure plate menekan disc clutch  Disc clutch berhubungan.
Kopling dibebaskan
Tekan pedal kopling setengah  Tekanan fluida timbul didalam master silinder  Relay valve beroperas  Poppet valve terbuka  Tekanan udara menggerakan power piston  Timbul tekanan negatip dibelakang hidrolik piston  Fluida kembali sedikit dari relay piston  Tekanan udara tertutup  Power piston berhenti beroperasi (tenaga kopling berkurang sebagai reaksi penekanan pedal)
Kekurangan tekanan udara
Tekan pedal kopling  Tekanan fluida timbul didalam master silinder  Hidrolik piston bergerak  Push rod kopling beroperasi  Clutch outer lever beroperasi  Release bearing beroperasi  Release lever beroperasi  Pressure plate terpisah dari disc clutch  Disc clutch bebas (Relay valve piston, poppet valve dan power piston beroperasi, tetapi tidak dapat menggerakan power piston bila tekanan udara rendah).


(2). Booster Kopling (Clutch Booster)
Cara kerja clutch booster membebaskan kopling
Pedal kopling ditekan  Minyak mengalir masuk clutch booster, terbagi 2 yaitu :
 Hydraulc piston (bergerak kekanan)  Push rod hydraulic cylinder (bergerak ke kanan)
 Relay valve piston (bergerak kekanan)  Poppet valve terbuka (tekanan udara langsung masuk ke ruang A)  Power piston bergerak ke kanan (udara dalam ruang B keluar melalui pernapasan)  Push rod booster bergerak kekanan  Hydraulc piston (bergerak kekanan)  Push rod hydraulic cylinder (bergerak ke kanan)
Dengan demikian hydraulic piston didorong oleh dua tenaga yaitu tekanan master cylinder dan tekanan booster. Bila servo udara/ booster rusak maka sistem pengoperasian tetap bekerja tetapi membutuhkan tenaga penekanan pedal yang lebih besar.



Gambar35. Kerja booster pada saat membebaskan kopling


Urutan aliran tenaganya adalah sebagai berikut :
Pedal kopling ditekan  Minyak mengalir masuk clutch booster, terbagi 2 yaitu :
 Hydraulc piston (Hydraulic piston bergerak kekanan)  Push rod (bergerak kekanan oleh tekanan dari master cylinder saja).
 Relay valve piston (tidak bekerja)

Cara kerja clutch booster menghubungkan kopling
Begitu pedal kopling dibebaskan, fluida akan kembali ke master cylinder, sehingga pegas pengembali mengembalikan seluruh bagian booster/ servo ke posisi semula, menyebabkan tekanan udara di dalam ruang A akan keluar melalui pernapasan


Gambar 36. Kerja booster pada saat meng hubungkan kopling

2 komentar: